小众却真香,电机矢量控制电流采样方案的抉择

共 1 个回答

切换为时间排序
人很悲剧

2020-04-13 17:36:04

前面的话

最近做的电机控制项目,之前纠结电流采样的方案,在这里简单总结了一下;

晚风轻轻飘荡,让欢畅更欢畅,幻想更幻想,就像你还在身旁
文/陈婧霏
推荐一首歌晚风,一开一听到这首歌居然有种王菲的感觉,非常听;夜已深,继续水文

目录

  • 1 电流采样的作用

  • 2 硬件架构

  • 3 采样关键

  • 4 采样方案

  • 5 三电阻采样

    • 5.1 三电阻采样点

    • 5.2 双电阻采样

    • 5.3 双电阻采样点

    • 5.4 单电阻采样

  • 6 总结

  • 7 附录

1 电流采样的作用

在FOC算法中,电流采样在反馈环节是相当重要的一部分,无论是有感FOC,还是无感FOC,相电流是交流三相同步电机在进行坐标变换的关键,最终通过SVPWM实现电机转子磁场和定子磁场的同步转动,通常这里有三种方案,单电阻采样双电阻采样三电阻采样,关系到整体系统的成本,算法的复杂程度和最终运行的效果,这里需要更加项目的具体需求进行选择。
本文参考ST的单电阻和三电阻采样以及TI的双电阻采样,还有microchip的资料,结合实际中可能需要注意的地方进行总结分析。

几种电流采样方案的对比;

电流采样成本算法
单电阻复杂
双电阻适中适中
三电阻简单

2 硬件架构

硬件上的设计通常是采集三相电流,通过运算放大器加偏置电压,这样可以就可以采集正负电流,最终在MCU中处理的时候减去偏置电压就行,以Infineon XC167CI SK Board单电阻的方案为例子,具体电路拓扑图如下;下面是TI C2000 的方案

AP1608410 原文链接运算放大器

3 采样关键

采样的关键是需要在三相逆变器高端关闭,低端打开的情况下进行采样,这是整体的采样点。因此,采样会存在窗口时间,因为ADC转换完成需要一定数量级的时间,也就是说,在ADC转换完成之前,桥低端是不能关闭的,在这里,双电阻和单电阻采样需要考虑窗口时间的限制,而三电阻采样则不存在窗口时间(PWM占空比接近100%),可以根据SVPWM当前所在象限,进行分类,只需要采集其中不受窗口时间限制的两相电流,然后根据 ,进行电流的重构。

4 采样方案

电流采样比较关键的地方主要是硬件的设计和采样点的设置,这里在后面会涉及到通过相应的触发信号去通知ADC进行电流采样,最后进行电流重构。

5 三电阻采样

TI的三电阻采样

5.1 三电阻采样点

正如前面所提到的三电阻采样可以避免窗口时间,如下图所示;在不同扇区需要采样的相电流,可以看到,共同点是避免去采样PWM占空比接近100%的那一相电流。可以参考一下ST的电机库的做法,通过TIMER_CH4作为ADC采样的触发信号,而采样则可以通过修改TIM_CCR4寄存器去改变采样点,相当灵活的做法;

5.2 双电阻采样

双电阻采样无法避免窗口时间,所以需要限制最终PWM的占空比,为ADC转换预留足够的时间;

5.3 双电阻采样点

5.4 单电阻采样

单电阻采样需要在一个PWM周期内进行两次采样,下面需要在SVPWM六个扇区进行相电流的分类,这里可以对SVPWM的原理进行分析,从而了解如何对电流进行重构;单电阻的电路结构如下图所示;为了便于理解整个采样的过程,为了表示逆变器的开关管的状态, Sa表示A相的上下管,同理Sb表示B相的上下管;

这里规定:Sa = 1表示上管导通,下管断开;Sa = 0表示下管导通,上管断开;

SbSc以此类推;

5.4.1 Sa Sb Sc:100

5.4.2 Sa Sb Sc:110


5.4.3 SVPWM的开关状态

开关状态AHBHCH电流
00000
1100IA
2110-IC
3010IB
4011-IA
5001IC
6101-IB
71110

因此,单电阻采样,需要在一个PWM周期内进行两次采样;具体如下图所示;图中的SAL,SBL,SCL分别对应整流桥的下管,因此在一个周期内分别进行了Sample 1Sample 2这两次采样,对照上表可以推出;

  • Sample 1:采集了开关管状态为SAL SBL SCL:101==>SAH SBH SCH:010,此时采样电流为
  • Sample 2:采集了开关管状态为SAL SBL SCL:100==>SAH SBH SCH:011,此时采样电流为

原理搞清楚之后,下面要注意的地方还有两点采样点的确认和窗口时间的限制;

5.4.4 ST方案

6 总结

本文介绍和对比了三种电流采样方案,简单给出了需要注意的地方,由于本人能力有限,文中难免出现错误和纰漏,请大佬不吝赐教。

7 附录

microchip 资料汇总TI 1-, 2-, and 3-Shunt FOC Inverter Reference Design

PID微分器与滤波器的爱恨情仇

三面大疆惨败,因为不懂PID的积分抗饱和

 简易PID算法的快速扫盲 

 一文教你搞懂C语言的Q格式

  现成轮子OSAL操作系统抽象层的移植

 一招教你单片机固件快速瘦身

基础知识 | hex文件格式详解


—— The End —


长按识别二维码关注获取更多内容

共 1 条
前往
70回答数