伺服电机是什么电机?伺服又是什么意思?(伺服电机和步进电机的区别)

共 1 个回答

切换为时间排序
hesilver

2021-07-21 18:56:48

伺服电机是什么电机?伺服又是什么意思?

你好,伺服电机是具有运转状态实时反馈的现代自动化新型电动机。就是伺服电机轴一端安装有一个旋转编码器,实时的监控伺服电机轴转过的角度或轴转动的速度,或轴转动多少转。编码器将检测到的数据发送给伺服驱动器,驱动器再进行控制伺服电机的运转状态。可以实时的检测到机器在运行中发生的错误而紧急停车,不至于产生意外。分为交流伺服电机,直流伺服电机两大类。不明白再追问,希望帮到你谢谢

伺服电机是一种执行无件,转距大愦动小,可在任何位置工作,并能正反转,用于自动控制系统及随动系统装置中作为执行元件或驱动元件,因此它只是为主电路服务的,相当于服务员,伺服就是服伺,服务的意思

伺服电机和步进电机的区别

区别 1、 控制的方式不同 步进电机:通过控制脉冲的个数控制转动角度的,一个脉冲对应一个步距角。 伺服电机:通过控制脉冲时间的长短控制转动角度。 2、工作流程不同 步进电机:工作流程为步进电机工作一般需要两个脉冲:信号脉冲和方向脉冲。 伺服电机:其工作流程就是一个电源连接开关,再连接伺服电机。 3、 低频特性不同 步进电机:在低速时易出现低频振动现象。 伺服电机:运转非常平稳,即使在低速时也不会出现振动现象。 4、矩频特性不同 步进电机:输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在 300~600r/min。 伺服电机:为恒力矩输出,即在其额定转速(一般为 2000 或 3000 r/min)以内,输出额定转矩,在额定转速以上为恒功率输出。 5、过载能力不同 步进电机:一般不具有过载能力。 伺服电机:具有较强的过载能力。 参考资料来源:搜狗百科-伺服电机 参考资料来源:搜狗百科-步进电机

我非常严肃的说一句,对待科学问题,要有把握才回答,不要误导提问者,以上几位回答者的答案均有误导性 步进电机和交流伺服电机性能比较 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为3.6°、 1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 三、矩频特性不同 步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。 四、过载能力不同 步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。 五、运行性能不同 步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。 六、速度响应性能不同 步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。 综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

步进电机和伺服电机的区别在于:1、控制精度不同。步进电机的相数和拍数越多,它的精确度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高。2、控制方式不同;一个是开环控制,一个是闭环控制。3、低频特性不同;步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(fft),可检测出机械的共振点便于系统调整。4、矩频特性不同;步进电机的输出力矩会随转速升高而下降,交流伺服电机为恒力矩输出,5、过载能力不同;步进电机一般不具有过载能力,而交流电机具有较强的过载能力。6、运行性能不同;步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。7、速度响应性能不同;步进电机从静止加速到工作转速需要上百毫秒,而交流伺服系统的加速性能较好,一般只需几毫秒,可用于要求快速启停的控制场合。

个人认为关键区别3点: 1,首要区别:伺服是闭环控制,带反馈的,知道走到哪了。而步进只执行不反馈,走到哪了不知道,除非到达目的触发条件。 2,精度不一样,伺服是存数字精度高,而步进是一度一度进给,精度不如伺服。 3,力矩不一样,伺服基本是恒力矩,而步进速度与力矩成反比。

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲个数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机安设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到高速的目的。 伺服电机又称执行电机,在自动控制系统中,用作执行元件,把收到的电信号转换成电机轴上的角位移或角速度输出。伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)也就是说伺服电机本身具备发出脉冲的功能,它每旋转一个角度,都会发出对应数量的脉冲,这样伺服驱动器和伺服电机编码器的脉冲形成了呼应,所以它是闭环控制,步进电机是开环控制。

最佳答案的6点区别讲的很具体了,通俗的讲,低转速场合用步进,也就是不超过1000r/min,100r/min以下的一般要配减速机,高速场合用伺服,1000-4000r/min,再高速的用定制伺服。有个误区是伺服一定比步进好,其实低速时,同尺寸,同状况下,步进电机比伺服力矩大,刚性好,由于工艺和制造成本,步进价格更便宜。目前市面上有一种步进和伺服的中间产品,叫步进伺服,本质上是步进,采用伺服算法。

什么叫做伺服电机?

作为国产伺服电机厂家,今天要科普科普一下伺服电机的工作原理! “伺服”一词源于希腊语“奴隶”的意思。“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动;当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。 伺服电机是自动控制装置中被用作执行元件的微特电机,其功能是将电信号转换成转轴的角位移或角速度。 伺服系统(servo mechanism)是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移。 因为伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。

楼主所说的伺服电机一定要伺服驱动器来驱动。 1楼大概理解为一切需要用驱动装置来驱动的电机都是伺服电机。 那么我想问步进马达也有驱动器,算不算伺服电机? 我还想问微型交直流可调速马达也带有调速器来驱动,它又算不算伺服电机? 需要强调的是:数控铣床主轴电机就是普通的三相电机,万万不可说成是伺服电机。因为它只能运行在速度控制下,绝对不能够做定位控制运动。而伺服电机是可以做位置,速度,力矩这三种控制模式的运动的。是很特殊的一种马达。

伺服电机:是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。 主要作用:在封闭的环里面使用,随时把信号传给系统,同时把系统给出的信号来修正自己的运转。 伺服电机和其他电机(如步进电机)相比优点: 1、精度:实现了位置,速度和力矩的闭环控制;克服了步进电机失步的问题。 2、转速:高速性能好,一般额定转速能达到2000~3000转。 3、适应性:抗过载能力强,能承受三倍于额定转矩的负载,对有瞬间负载波动和要求快速起动的场合特别适用。 4、稳定:低速运行平稳,低速运行时不会产生类似于步进电机的步进运行现象。适用于有高速响应要求的场合。 5、及时性:电机加减速的动态相应时间短,一般在几十毫秒之内。 6、舒适性:发热和噪音明显降低。

伺伏可理解为伺候伏侍是主电机的控制电机 伺服电机是可以连续旋转的电-机械转换器。作为液压阀控制器的伺服电机,属于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机最为常用。 直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。具有起动转矩大,调速范围宽,机械特性和调节特性的线性度好,控制方便等优点,但换向电刷的磨损和易产生火花会影响其使用寿命。近年来出现的无刷直流伺服电机避免了电刷摩擦和换向干扰,因此灵敏度高,死区小,噪声低,寿命长,对周围电子设备干扰小。 直流伺服电机的输出转速/输入电压的传递函数可近似视为一阶迟后环节,其机电时间常数一般大约在十几毫秒到几十毫秒之间。而某些低惯量直流伺服电机(如空心杯转子型、印刷绕组型、无槽型)的时间常数仅为几毫秒到二十毫秒。   小功率规格的直流伺服电机的额定转速在3000r/min以上,甚至大于10000r/min。因此作为液压阀的控制器需配用高速比的减速器。而直流力矩伺服电机(即低速直流伺服电机)可在几十转/分的低速下,甚至在长期堵转的条件下工作,故可直接驱动被控件而不需减速 -------------------------------------------------------------------------------- 伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 伺服和步进各有优缺点,都有彼此无法替代的特点: 1、在控制精度上,我个人的想法一般情况下还是伺服优于步进,步进是有细分,但细分高于40以上还有实际意义吗?256细分的步角已经出现大小步的现象了,如何谈精度?个人认为40以上的细分已经不能作为定位了,只能为了加强运行的平滑性,而伺服电机可以通过外部的编码器分辨率的加大来提高精度。   2、伺服在微动或定位保持上确实是一种动态的平衡,它是系统通过检测的位置信号进行的负反馈PID调节,它低于一个编码器分辨率时的微动不响应,定位保持时也是动态的响应外部负载而随时改变力矩以达到动态的静平衡,保持精度比步进差。   3、由于步进电机驱动通常带有细分,而停止时通常会停止在细分点也就是不是磁极点上,那么停电后再次上电时驱动器不会按照停止时的各相电流进行分配,那么出现了步进电机重新上电时通常会出现强烈的小振一下,也就是转子迅速与初始定子磁场对应,而伺服没有该现象。   4、关于响应时间,步进在其启动频率和加速允许的条件下确实可以做到比伺服快的多频繁正反向启动停止,但其有严格的启动频率和加速要求,如果是高频启动,例如:单次的0到1000转/分(普通步进只能几百转/分,举例按能达到高速的3相混合步进算),伺服从接到脉冲到整定结束的时间会比步进的加速时间快。   5、关于最高速和步进有丢步问题上:伺服优势明显。   6、伺服由于有PID调节,会有整定时间的问题,该时间会随速度的高低和负载的变化而变化,该整定时间可控性差。整定时间与加减速时间不同,整定时间由系统PID增益、积分时间常数、设定速度值等等因素影响。步进却没有整定时间的概念,加减速时间简单可控制。   7、转矩的控制上,步进的电机的转矩会随着速度的变化而明显改变,在高速区域会随着速度的变化产生强烈的下降;伺服在额定转速内最大转矩为恒力矩输出,而且伺服可以进行力矩控制,这是步进无法做倒的。   8、价格上,步进优势很明显。 伺服电机的英文名字:Servo motor

伺服电机与普通电机的区别?

一、定义不同 普通电机是我们平时间的比较多的电机,电动玩具,刮胡刀等里面都有。这种电机有转速过快,扭力过小的特点,一般只有两个引脚,用电池的正负极接上两个引脚就会转起来,然后电池得正负极再相反的接在两引脚上电机也会向反转。 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲。 这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 二、伺服电机维修试机需要专用设备,而普通电机不需要 由于伺服电机的结构是闭环反馈控制,这个反馈部件我们叫做编码器,用来测试电机速度,位置,力矩功能,但通常编码器都是一一对应,就是不同的电机系列对应不同的驱动器,甚至同一系列不同功率电机对应不同的驱动器,不可以互换使用。 通常在三菱,安川,松下日系品牌上这种情况尤为明显,厂家在设计时为了自身利益的考虑,通讯协议也不公开,这就直接导致了维修试机成本过高,普通电机维修一般的工控维修公司无法做到;而通常的普通电机只需要3相调压,直流调压,普通变频器就足够应付。 三、伺服电机故障类型远多于普通电机 普通电机由于结构简单,通常都是些机修,机加,焊补,绕线等处理,对于电子维修要求为0;而伺服电机除了这些以外,编码器故障也需要处理,信号衰减,通讯中断,速度不稳定,丢脉冲通常都和编码器电路板电子元件,IC片有关,必须具备电子维修技能才可以处理。 参考资料来源:搜狗百科-电机 参考资料来源:搜狗百科-伺服电机

“伺服”的含义是“跟随”控制信号的意思。伺服的基本概念是准确、精确、快速定位。伺服器对电机的作用就是提供一个电压大小可控,电压相位与励磁电压相差90度电角度的控制电压信号。伺服电机的构造与普通电机是有区别的,带编码器反馈闭环控制,能满足快速响应和准确定位。

伺服电动机与普通异步电机的最大区别是转子电阻比较大,大到使发生最大电磁转矩的转差率sm>1。其具体原理如下: 伺服电动机的结构实际上与普通两相交流异步电动机没有什么区别。伺服电动机的定子有两相相差120度电角度的交流绕组,分别称为励磁绕组和控制绕组,其转子就是普通的笼型异步电动机的鼠笼绕组。使用时,励磁绕组接单相交流电,在气隙产生脉振磁场,转子绕组不产生电磁转矩,电动机不工作。当控制绕组接上相位与励磁绕组相差90度电角度的交流电时,电动机的气隙便有旋转磁场产生,转子将产生电磁转矩转动。当控制绕组的控制电压信号撤除后,如果是普通电机,由于转子电阻较小,(根据双旋转理论)脉振磁场分解的两个旋转磁场各自产生的机械特性的合成结果是产生的电磁转矩大于零。因此,电机转子仍然保持转动,不能停止。而伺服电动机,由于转子电阻大,且大到使发生最大电磁转矩的转差率sm>1。脉振磁场分解的两个旋转磁场各自产生的机械特性的合成结果是产生的电磁转矩小于零,也就是产生的电磁转矩是制动转矩,电机将在这个制动转矩作用下将很快停止转动。

伺服电机是怎么操作的?

一般伺服电机都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式 。   如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。   如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。   就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。   对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。   换一种说法是:   1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。   2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。   3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。

三菱伺服电机工作原理 伺服电机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 伺服电机是一个典型闭环反馈系统,减速齿轮组由电机驱动,其终端(输出端)带动一个线性的比例电位器作位置检测,该电位器把转角坐标转换为一比例电压反馈给控制线路板,控制线路板将其与输入的控制脉冲信号比较,产生纠正脉冲,并驱动电机正向或反向地转动,使齿轮组的输出位置与期望值相符,令纠正脉冲趋于为0,从而达到使伺服电机精确定位的目的。 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广 3、无自转现象 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线) 交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。 交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W的小功率控制系统。

和普通电机差不多

共 1 条
  • 1
前往
68回答数