伺服电机是干什么用的?(伺服电机和步进电机的区别)

共 1 个回答

切换为时间排序
iroro

2021-07-21 18:56:49

伺服电机是干什么用的?

伺服是用来定位距离,或者角度。你叫他转一圈,他就转一圈,你叫他转0.01度,它就不会转0.011度。可以用电脑或者PLC或者各类控制器控制均可以。比如CNC加工就是用伺服电机执行的

伺服就是准确、稳定、快速定位,可以用来控制转矩、速度和位置。 各个领域都能用到,广泛应用在机床、纺织机械、电子制作设备、包装机械、印刷机械、医疗设备等行业

伺服电机制动器,又称抱闸,是得电释放的一个元件,一般选择带有制动器的伺服电机后,是和电机一体的。一般采用dc24v电源动作。 主要用于断电后,锁住伺服电机转子轴。 一般用于垂直伺服轴上面,防止突然断电,垂直负载由于重力作用会带动电机旋转下滑,从而产生危险。

随时能控制转速快慢 检测转速的快慢 能反馈信息 调节速度

伺服电机和步进电机的区别

区别 1、 控制的方式不同 步进电机:通过控制脉冲的个数控制转动角度的,一个脉冲对应一个步距角。 伺服电机:通过控制脉冲时间的长短控制转动角度。 2、工作流程不同 步进电机:工作流程为步进电机工作一般需要两个脉冲:信号脉冲和方向脉冲。 伺服电机:其工作流程就是一个电源连接开关,再连接伺服电机。 3、 低频特性不同 步进电机:在低速时易出现低频振动现象。 伺服电机:运转非常平稳,即使在低速时也不会出现振动现象。 4、矩频特性不同 步进电机:输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在 300~600r/min。 伺服电机:为恒力矩输出,即在其额定转速(一般为 2000 或 3000 r/min)以内,输出额定转矩,在额定转速以上为恒功率输出。 5、过载能力不同 步进电机:一般不具有过载能力。 伺服电机:具有较强的过载能力。 参考资料来源:搜狗百科-伺服电机 参考资料来源:搜狗百科-步进电机

我非常严肃的说一句,对待科学问题,要有把握才回答,不要误导提问者,以上几位回答者的答案均有误导性 步进电机和交流伺服电机性能比较 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为3.6°、 1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 三、矩频特性不同 步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。 四、过载能力不同 步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。 五、运行性能不同 步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。 六、速度响应性能不同 步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。 综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

步进电机和伺服电机的区别在于:1、控制精度不同。步进电机的相数和拍数越多,它的精确度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高。2、控制方式不同;一个是开环控制,一个是闭环控制。3、低频特性不同;步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(fft),可检测出机械的共振点便于系统调整。4、矩频特性不同;步进电机的输出力矩会随转速升高而下降,交流伺服电机为恒力矩输出,5、过载能力不同;步进电机一般不具有过载能力,而交流电机具有较强的过载能力。6、运行性能不同;步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。7、速度响应性能不同;步进电机从静止加速到工作转速需要上百毫秒,而交流伺服系统的加速性能较好,一般只需几毫秒,可用于要求快速启停的控制场合。

个人认为关键区别3点: 1,首要区别:伺服是闭环控制,带反馈的,知道走到哪了。而步进只执行不反馈,走到哪了不知道,除非到达目的触发条件。 2,精度不一样,伺服是存数字精度高,而步进是一度一度进给,精度不如伺服。 3,力矩不一样,伺服基本是恒力矩,而步进速度与力矩成反比。

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲个数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机安设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到高速的目的。 伺服电机又称执行电机,在自动控制系统中,用作执行元件,把收到的电信号转换成电机轴上的角位移或角速度输出。伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)也就是说伺服电机本身具备发出脉冲的功能,它每旋转一个角度,都会发出对应数量的脉冲,这样伺服驱动器和伺服电机编码器的脉冲形成了呼应,所以它是闭环控制,步进电机是开环控制。

最佳答案的6点区别讲的很具体了,通俗的讲,低转速场合用步进,也就是不超过1000r/min,100r/min以下的一般要配减速机,高速场合用伺服,1000-4000r/min,再高速的用定制伺服。有个误区是伺服一定比步进好,其实低速时,同尺寸,同状况下,步进电机比伺服力矩大,刚性好,由于工艺和制造成本,步进价格更便宜。目前市面上有一种步进和伺服的中间产品,叫步进伺服,本质上是步进,采用伺服算法。

伺服电机的工作原理是什么?

工作原理: 伺服系统(servo mechanism)是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移。 因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环。 如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 扩展资料: 伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。 伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制。 并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。 分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 参考资料:百度百科---伺服电机

伺服电机原理 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广 3、无自转现象 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线) 交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。 交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W的小功率控制系统。伺服电机工作原理 1.伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 2.交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 3.伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 伺服电机安装使用注意事项 一、伺服电机油和水的保护 A:伺服电机可以用在会受水或油滴侵袭的场所,但是它不是全防水或防油的。因此, 伺服电机不应当放置或使用在水中或油侵的环境中。 B:如果伺服电机连接到一个减速齿轮,使用伺服电机时应当加油封,以防止减速齿轮的油进入伺服电机 C:伺服电机的电缆不要浸没在油或水中。 二、伺服电机电缆→减轻应力 A:确保电缆不因外部弯曲力或自身重量而受到力矩或垂直负荷,尤其是在电缆出口处或连接处。 B:在伺服电机移动的情况下,应把电缆(就是随电机配置的那根)牢固地固定到一个静止的部分(相对电机),并且应当用一个装在电缆支座里的附加电缆来延长它,这样弯曲应力可以减到最小。 C:电缆的弯头半径做到尽可能大。 三、伺服电机允许的轴端负载 A:确保在安装和运转时加到伺服电机轴上的径向和轴向负载控制在每种型号的规定值以内。 B:在安装一个刚性联轴器时要格外小心,特别是过度的弯曲负载可能导致轴端和轴承的损坏或磨损 C:最好用柔性联轴器,以便使径向负载低于允许值,此物是专为高机械强度的伺服电机设计的。 D:关于允许轴负载,请参阅“允许的轴负荷表”(使用说明书)。 四、伺服电机安装注意 A:在安装/拆卸耦合部件到伺服电机轴端时,不要用锤子直接敲打轴端。(锤子直接敲打轴端,伺服电机轴另一端的编码器要被敲坏) B:竭力使轴端对齐到最佳状态(对不好可能导致振动或轴承损坏)。

■定义: 在伺服系统中控制机械元件运转的发动机.是一种补助马达间接变速装置。 ■作用:伺服电机,可使控制速度,位置精度非常准确。将电压信号转化为转矩和转速以驱动控制对象 ■分类:直流伺服电机和交流伺服电机。 直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机

原发布者:f514808381 伺服电动机伺服电动机的作用是将输入的电压信号(即控制电压)转换成轴上的角位移或角速度输出,在自动控制系统中常作为执行元件,所以伺服电动机又称为执行电动机,其最大特点是:有控制电压时转子立即旋转,无控制电压时转子立即停转。转轴转向和转速是由控制电压的方向和大小决定的。伺服电动机分为交流和直流两大类。一、交流伺服电动机1.基本结构交流伺服电动机主要由定子和转子构成。定子铁心通常用硅钢片叠压而成。定子铁心表面的槽内嵌有两相绕组,其中一相绕组是励磁绕组,另一相绕组是控制绕组,两相绕组在空间位置上互差90°电角度。工作时励磁绕组f与交流励磁电源相连,控制绕组k加控制信号电压。Uk1、结构(永磁同步电机)主要由:定子1、转子5和检测元件8等几部分组成。11234856792.工作原理交流伺服电动机在没有控制电压时,气隙中只有励磁绕组产生的脉动磁场,转子上没有启动转矩而静止不动。当有控制电压且控制绕组电流和励磁绕组电流不同相时,则在气隙中产生一个旋转磁场并产生电磁转矩,使转子沿旋转磁场的方向旋转。但是对伺服电动机要求不仅是在控制电压作用下就能启动,且电压消失后电动机应能立即停转。如果伺服电动机控制电压消失后像一般单相异步电动机那样继续转动,则出现失控现象,我们把这种因失控而自行旋转的现象称为自转。为消除交流伺服电动机的自转现象,必须加大转子电阻r2,这是因为当控

伺服电机是什么 做什么的 原理是什么

伺服电机,通俗些说,就是被控制的电机,,主要有直流伺服电机,和交流伺服电机; 在工厂需要调速,或调具的地方,通过伺服电机来实现, 一般伺服电机包括控制部分,执行机构,和回馈部分(大概着三部分) 所以伺服电机,对执行的精度要求比较高

转; 伺服电机内部的转于是永磁铁,驱动gS控制的u/V/W三相电形成电磁场 转子在此礤场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较 调整转子转动的角度。伺服电机的精度决定于编码器的精度{线数)。两相电机和四相电机有何不同真正的两相步进电机在定子上只有2个绕组,有4相出线,一般整步步距角为1.8半步为o。9”。在驱动器中,只要对两相绕组电流通断和电流方向进行控制就可以了。而4相步进电机在定子上有四个绕组,有8根出线,整步为O.9,半步为0.45 .不过在驱动器中需要刘4个绕组进行控制, 电路的复杂性和成本都明显增加。所以一般我们都选择两相电机配两相驱动器.如果需要更小的步距角,可以采用细分驱动器。不过细心的用户会发现,四通电机公司生产的电机称为两相,实际有两相4线的,也有四相日线的;驱动器中有两相的却没有四相的。这是因为,四相绕组两两并联或串联后就成为两相绕组,这样四相电机就变成两相电机了,而串联和并联会带来电机.的绕组电阻和电感的成倍变化.从而带来电机运行性能的明显变化。一般来说,并联使用时,电机有较好的加速性能.高速力矩保持得好,但是电机需要输入2倍‘额定电流的电流.发热较大.

电机主要的结构是 铁片和金属是 主心 采用磁厂原理 就这些是主要的

共 1 条
  • 1
前往
67回答数